Goodwin–Staton integral

From HandWiki

In mathematics the Goodwin–Staton integral is defined as :[1]

G(z)=0et2t+zdt

It satisfies the following third-order nonlinear differential equation:

4w(z)+8zddzw(z)+(2+2z2)d2dz2w(z)+zd3dz3w(z)=0

Properties

Symmetry:

G(z)=G(z)

Expansion for small z:

G(z)=1γln(z2)icsgn(iz2)π+2iπz+(2+γ+ln(z2)+icsgn(iz2)π)z24i3πz3+(5412γ12ln(z2)12icsgn(iz2)π)z4+O(z5)

References

  1. Frank William John Olver (ed.), N. M. Temme (Chapter contr.), NIST Handbook of Mathematical Functions, Chapter 7, p160,Cambridge University Press 2010
  • http://journals.cambridge.org/article_S0013091504001087
  • Mamedov, B.A. (2007). "Evaluation of the generalized Goodwin–Staton integral using binomial expansion theorem". Journal of Quantitative Spectroscopy and Radiative Transfer 105: 8–11. doi:10.1016/j.jqsrt.2006.09.018. 
  • http://dlmf.nist.gov/7.2
  • https://web.archive.org/web/20150225035306/http://discovery.dundee.ac.uk/portal/en/research/the-generalized-goodwinstaton-integral(3db9f429-7d7f-488c-a1d7-c8efffd01158).html
  • https://web.archive.org/web/20150225105452/http://discovery.dundee.ac.uk/portal/en/research/the-generalized-goodwinstaton-integral(3db9f429-7d7f-488c-a1d7-c8efffd01158)/export.html
  • http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_02.pdf
  • F. W. J. Olver, Werner Rheinbolt, Academic Press, 2014, Mathematics,Asymptotics and Special Functions, 588 pages, ISBN 9781483267449 gbook